(新教材)高中数学A版 选择性必修第三册知识点(17页).zip

2024-11-14 10:49:20 121
联系客服提示-公文范文网-试题试卷网-慧文公文专家库

该文件属于压缩包,请用电脑下载,或者添加客服微信帮忙下载

高中数学 选择性必修第

 

第六章 计数原理

1).分类加法计数原理与分步乘法计数原理

1.分类加法计数原理

完成一件事有n类不同的方案,在第一类方案中有m1种不同的方法,在第二类方案中有m2种不同的方法,……,在第n类方案中有mn种不同的方法,则完成这件事情,共有N______________种不同的方法.

2.分步乘法计数原理

完成一件事情需要n个不同的步骤,完成第一步有m1种不同的方法,完成第二步有m2种不同的方法,……,完成第n步有mn种不同的方法,那么完成这件事情共有N________________种不同的方法.

3.两个计数原理的区别

分类加法计数原理与分步乘法计数原理,都涉及完成一件事情的不同方法的种数.它们的区别在于:分类加法计数原理与分类有关,各种方法相互独立,用其中的任一种方法都可以完成这件事;分步乘法计数原理与分步有关,各个步骤相互依存,只有各个步骤都完成了,这件事才算完成.

2)、排列

  1 定义

  (1)从n个不同元素中取出m个元素,按照一定的顺序排成一列,叫做从n个不同元素中取出m个元素的一排列。

  (2)从n个不同元素中取出m个元素的所有排列的个数,叫做从n个不同元素中取出m个元素的排列数,记为 Amn.

  2 排列数的公式与性质

  (1)排列数的公式:Amn=n(n-1)(n-2)…(n-m+1)

  特例:当m=n时, Amn=n!=n(n-1)(n-2)…×3×2×1

  规定:0!=1

 3)、组合

  1 定义

  (1)从n个不同元素中取出 m个元素并成一组,叫做从n个不同元素中取出m个元素的一个组合

  (2)从n个不同元素中取出m个元素的所有组合的个数,叫做从n个不同元素中取出m个元素的组合数,用符号 Cmn表示。

  2 比较与鉴别

  由排列与组合的定义知,获得一个排列需要“取出元素”和“对取出元素按一定顺序排成一列”两个过程,而获得一个组合只需要“取出元素”,不管怎样的顺序并成一组这一个步骤。

  排列与组合的区别在于组合仅与选取的元素有关,而排列不仅与选取的元素有关,而且还与取出元素的顺序有关。因此,所给问题是否与取出元素的顺序有关,是判断这一问题是排列问题还是组合问题的理论依据。


阅读全文
(想阅读完全部图文内容,您需要先登陆!)
如果喜欢本篇内容,请赞赏鼓励哦!
尚未有人赏赞,赶紧来一个吧
查看更多>>
请选择打赏类型
¥0.01
¥1
¥365
¥188
¥99.99
¥66.6
¥52
¥6.66
¥6
赏赞

分享:

微信扫一扫在手机阅读、分享本文

关于本文

本文标题:(新教材)高中数学A版 选择性必修第三册知识点(17页).zip

链接地址:http://www.gwzjk.com//index/article/detail/detail_id/70473.html

相关内容
    热门推荐
    • 本周热门
    • 本月热门
        二维码

        微信订阅号

        联系客服